Please wait...

Inequalities Test 1
Result
Inequalities Test 1
  • /

    Score
  • -

    Rank
Time Taken: -
  • Question 1/10
    1 / -0

    fraction numerator straight x squared plus 5 straight x plus 4 over denominator straight x squared minus 7 straight x plus 12 end fraction less or equal than 0 (where x ≠ 3, 4), then x ϵ

    Solutions

    Given 

    ⇒ 

    ⇒ 

    ⇒ (x + 4) (x – 4) (x – 3) ≤ 0

    The critical points are – 4, – 1, 3 and 4

     

    When x = 0, the inequality is not true

    Hence when x Î [-4, -1] or (3, 4) the inequality is true.

    ∴ The required solution set [-4, -1] ∪ (3, 4)

  • Question 2/10
    1 / -0

    If 3 – x < 4 , then

    Solutions

    Given, 3 – x < 4

    ⇒ – x < 4 – 3 ⇒ – x < 1

    ⇒ x > – 1

  • Question 3/10
    1 / -0

     

    If 6 < x < 8, then which one of the following is correct?

    Solutions

    < x < 8

     

    Or        x ϵ [6, 8]

    ⇒        (x – 6) (x – 8) < 0

  • Question 4/10
    1 / -0

    What are the values of ‘x’ that satisfy the inequality 4x2 + 5x – 9 < 0?

    Solutions

    Given 4x2 + 5x – 9< 0 Þ 4x2 + 9x – 4x – 9 < 0

    x (4x + 9) – 1(4x + 9) < 0

    (4x + 9) (x – 1) < 0

    ∴ The critical points are 

     

    When x = 0, the given in equation is true

    Hence, the solution set is x ϵ 

  • Question 5/10
    1 / -0

     

    What are the real values of x that satisfy the simultaneous inequations 6x + 9 < 3x + 5 and 4x + 7 > 2x – 5?

    Solutions

    Given

               6x  + 9 < 3x + 5          :           4x + 7 > 2x – 5

               6x – 3x < 5 – 9           :           4x – 2x > -5 – 7

               3x < – 4                      :           2x > – 12

               ⇒ x < –  ….(A)    :           x > – 6….. (B)

               ∴ From (A) and (B)

               We have x ϵ 

  • Question 6/10
    1 / -0

     

    For real numbers a, b, c and d, which of the following is always true?

    Solutions

    Choice (A) is a standard result

    Consider choice (B)

    4 > 2 and – 3 > -4

    But 4(-3) < 2 (-4)

    Consider choice (C),

    4 > 2 and -2 > -5

    But 4 + 2 < 2 + 5

  • Question 7/10
    1 / -0

    straight x plus 3 over straight x equals straight x squared

    III. 2x2 – x + 2 = x2 + 4x – 4

    IV. x3 + 6x2 + 2x – 1 = 0

    Solutions

    I. x2 +  = 2 or x4 – 2x2 + 1 = 0 is not a quadratic polynomial.

    II. x +  = x2 + 3 = x3 ⇒ x3 – x2 – 3 = 0 is not a quadratic polynomial.

    III. 2x2 – x + 2 = x2 + 4x – 4

          Or 2x2 – x + 2 – x2 – 4x + 4 = 0

          Or x2 – 5x + 6 = 0 is a quadratic polynomial.

    IV.  x3 + 6x2 + 2x – 1 = 0 is not a quadratic polynomial.

  • Question 8/10
    1 / -0

     

    Find the range of the real values of x satisfying the inequalities 3x + 4 < 6 and 4x + 3 > 6.

    Solutions

    Given 3x + 4 < 6 and 4x + 3 > 6

    3x < 2 and 4x > 3

    <  and x >  ………. (2)

    There is no real value of x satisfying the above In equations simultaneously

    ∴ The solution set is empty set.

  • Question 9/10
    1 / -0

    Find the range of the values of x satisfying the following inequalities.

    4x + 3 > 6x + 7

    Solutions

    Given 4x + 3 > 6x + 7

    ⇒ 4x  – 6x > 7 – 3

  • Question 10/10
    1 / -0

     

    The set consisting of all real numbers lying between 5 and 2 including 2 but excluding – 5 is

    Solutions

    (-5, 2] (By definition)

User Profile
-

Correct (-)

Wrong (-)

Skipped (-)


  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Click on Allow to receive notifications
×
Open Now