Please wait...

Algebra Test 170
Result
Algebra Test 170
  • /

    Score
  • -

    Rank
Time Taken: -
  • Question 1/10
    1 / -0.25

    If x + y = 4 and x3+y3=12, then the value of x4+y4 = ?

    Solutions

    x3+y3 = (x+y)3−3xy(x+y)

    12 = 43−3xy×4

    12 = 64-12xy

    12xy = 52

    3xy = 13 ---- (i)

    Also, (x+y)2 = x2+y2+2xy

    42 = x2+y2+2× (From I)

    x2+y2 = 16−=

    Therefore, x4+y4 = (x2+y2)2 – 2x2y2

    =

    =

    Hence, option B is the correct answer.

  • Question 2/10
    1 / -0.25

    If x + y + z = 10, x3 + y+ z3 = 28 and xyz = 6, find xy + yz + zx?
    Solutions

    We know that x3 + y3 + z3 − 3xyz = (x + y + z)[(x + y + z)2 – 3(xy + yz + zx)]

    ⇒ 28 – 3×6 = 10[100 – 3(xy + yz + zx)]

    ⇒ 10/10 = 100 – 3(xy + yz + zx)

    ⇒ 3(xy + yz + zx) = 100 – 1

    ⇒ xy + yz + zx = 99/3 = 33

  • Question 3/10
    1 / -0.25

    The expression  is equal to: 
    Solutions






  • Question 4/10
    1 / -0.25

    If then what is the value of
    Solutions
    Given:
    Then,
    x – 1 = 5 + 2√6 = (√3 + √2)2
    Now,
     



    = √3 + √2 + √3 - √2
    = 2√3
  • Question 5/10
    1 / -0.25

    If a + 2b = 10 and 2 ab = 9, then |a – 2b| is equal to:

    Solutions


    a + 2b = 10 and 2 ab = 9,

    (a – 2b)2 = (a + 2b)2 – 8ab

    (a – 2b)2 = 102 – 4 × 9

    (a – 2b)2 = 100 − 36

    (a – 2b)2 = 64

    (a – 2b) = 8.

  • Question 6/10
    1 / -0.25

    If 3x2 – 5x + 1 = 0, then the value of  is:
    Solutions

    3x2 – 5x + 1 = 0

    3x2 + 1 = 5x

    On dividing by 3x:

    x +  =

    On squaring both sides:

    x2 +  + 2 × (x) ×  =

    x2 +  =  –

    x2 +  =  =  =

  • Question 7/10
    1 / -0.25

    If a = 43, b = 42, c = 41, then find the value of a3 + b3 + c3 – 3abc
    Solutions

    a3 + b3 + c3 – 3abc = (a + b + c)(a2 + b2 + c2 – ab – bc – ca)

    ⇒ a3 + b3 + c3 – 3abc = (a + b + c)[a(a–b) + b(b–c) + c(c–a)]

    Given, a = 43, b = 42, c = 41

    ⇒ a3 + b3 + c3 – 3abc = (43 + 42 + 42)[43×1 + 42×1 − 41×2]

    ⇒ a3 + b3 + c3 – 3abc = 378

  • Question 8/10
    1 / -0.25

    If , then what is the value of ?
    Solutions

    Given:

  • Question 9/10
    1 / -0.25

    The value of [(a2 – b2)3 + (b2 – c2)3 + (c2 – a2)3] ÷ [(a – b)3 + (b – c)3 + (c – a)3] is equal to: 
    Solutions

    Consider [(a2 – b2)3 + (b2 – c2)3 + (c2 – a2)3] ÷ [(a – b)3 + (b – c)3 + (c – a)3]

    We know that

    If x + y + z = 0

    Then x3 + y3 + z3 = 3xyz

    Clearly, (a2 – b2) + (b2 – c2) + (c2 – a2) = 0

    Hence, [(a2 – b2)3 + (b2 – c2)3 + (c2 – a2)3] = 3(a2 – b2)(b2 – c2)(c2 – a2)

    Clearly, (a – b) + (b – c) + (c – a) = 0

    Hence, [(a – b)3 + (b – c)3 + (c – a)3] = 3(a – b)(b – c)(c – a)

    Now, [(a2 – b2)3 + (b2 – c2)3 + (c2 – a2)3] ÷ [(a – b)3 + (b – c)3 + (c – a)3]

    =  = (a + b)(b + c)(c + a)

  • Question 10/10
    1 / -0.25

    If x−(√7)x + 1 = 0, then (x3 + x-3) = ?
    Solutions

    x−(√7)x + 1 = 0
    x+ 1 = (√7)x

    Dividing the equation give in question by x:
    x + 1/x = √7

    Cubing on both sides:

    x3+ 1/x3 + 3(x+1/x) = 7√7

    x3 + 1/x3+ 3√7 = 7√7

    Hence
    x3 + 1/x3= 4√7

User Profile
-

Correct (-)

Wrong (-)

Skipped (-)


  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Click on Allow to receive notifications
×
Open Now