Please wait...
/
-
x3+y3 = (x+y)3−3xy(x+y)
⇒ 12 = 43−3xy×4
⇒ 12 = 64-12xy
⇒ 12xy = 52
⇒ 3xy = 13 ---- (i)
Also, (x+y)2 = x2+y2+2xy
42 = x2+y2+2× (From I)
⇒ x2+y2 = 16−=
Therefore, x4+y4 = (x2+y2)2 – 2x2y2
=
Hence, option B is the correct answer.
We know that x3 + y3 + z3 − 3xyz = (x + y + z)[(x + y + z)2 – 3(xy + yz + zx)]
⇒ 28 – 3×6 = 10[100 – 3(xy + yz + zx)]
⇒ 10/10 = 100 – 3(xy + yz + zx)
⇒ 3(xy + yz + zx) = 100 – 1
⇒ xy + yz + zx = 99/3 = 33
a + 2b = 10 and 2 ab = 9,
(a – 2b)2 = (a + 2b)2 – 8ab
⇒ (a – 2b)2 = 102 – 4 × 9
⇒ (a – 2b)2 = 100 − 36
⇒ (a – 2b)2 = 64
⇒ (a – 2b) = 8.
3x2 – 5x + 1 = 0
⇒ 3x2 + 1 = 5x
On dividing by 3x:
⇒ x + =
On squaring both sides:
⇒ x2 + + 2 × (x) × =
⇒ x2 + = –
⇒ x2 + = = =
a3 + b3 + c3 – 3abc = (a + b + c)(a2 + b2 + c2 – ab – bc – ca)
⇒ a3 + b3 + c3 – 3abc = (a + b + c)[a(a–b) + b(b–c) + c(c–a)]
Given, a = 43, b = 42, c = 41
⇒ a3 + b3 + c3 – 3abc = (43 + 42 + 42)[43×1 + 42×1 − 41×2]
⇒ a3 + b3 + c3 – 3abc = 378
Given:
⇒
Consider [(a2 – b2)3 + (b2 – c2)3 + (c2 – a2)3] ÷ [(a – b)3 + (b – c)3 + (c – a)3]
We know that
If x + y + z = 0
Then x3 + y3 + z3 = 3xyz
Clearly, (a2 – b2) + (b2 – c2) + (c2 – a2) = 0
Hence, [(a2 – b2)3 + (b2 – c2)3 + (c2 – a2)3] = 3(a2 – b2)(b2 – c2)(c2 – a2)
Clearly, (a – b) + (b – c) + (c – a) = 0
Hence, [(a – b)3 + (b – c)3 + (c – a)3] = 3(a – b)(b – c)(c – a)
Now, [(a2 – b2)3 + (b2 – c2)3 + (c2 – a2)3] ÷ [(a – b)3 + (b – c)3 + (c – a)3]
= = (a + b)(b + c)(c + a)
x2 −(√7)x + 1 = 0x2 + 1 = (√7)xDividing the equation give in question by x:x + 1/x = √7
Cubing on both sides:
x3+ 1/x3 + 3(x+1/x) = 7√7
x3 + 1/x3+ 3√7 = 7√7
Hence x3 + 1/x3= 4√7
Correct (-)
Wrong (-)
Skipped (-)