Solutions
B = A3 – A2 - 4A + 5I
|A - λI| = 0
⇒ (1- λ) (2 - λ) (-2 - λ) – 1 (0) = 0
⇒ λ = 1, λ = 2, λ = -2
If λ is an Eigen value pf A, then λn will be an Eigen value pf An.
If λ is an Eigen value of A, then A, then k λ will be an Eigen value of kA where k is a scalar.
Eigen values of A are 1, 2, -2
Eigen values of A2 are 1, 4, 4
Eigen values of A3 are 1, 8, -8
Eigen values of 4A are 4, 8, -8
Eigen values of 5I are 5, 5, 5
B = A3 – A2 - 4A + 5I
λ1B = λ13– λ12– 4λ1 + 5 = 1 - 1 - 4 + 5 = 1
λ2B = λ23– λ22– 4λ2 + 5 = 8 - 4 - 8 + 5 = 1
λ3B = λ33– λ32– 4λ3 + 5 = -8 - 4 + 8 + 5 = 1
Eigen values of B are 1, 1, 1
Determine of matrix = product of Eigen values = 1