Please wait...

Engineering Mathematics Test 7
Result
Engineering Mathematics Test 7
  • /

    Score
  • -

    Rank
Time Taken: -
  • Question 1/10
    1 / -0

    If d2ydt2+y=0 under the conditions y = 1, dydt=0, when t = 0, then y(π/2) is equal to
    Solutions

    (D2 + 1) y = 0

    A.E. is (D2 + 1) = 0

    ⇒ D = ± i

    Solution is, y = (C1 cos t + C2 sin t)

    Given that, y(0) = 1

    ⇒ 1 = (C1 + 0) ⇒ C1 = 1

    y’ = -C1 sin t + C2 cos t

    y’(0) = 0

    ⇒ 0 = 0 + C2 ⇒ C2 = 0

    ⇒ y = cos t

    y(π2)=cos(π2)=0

  • Question 2/10
    1 / -0

    Which of the following equations represents a one-dimensional wave equation?
    Solutions

    One dimensional wave equation: 2ut2=C22ux2

    Two-dimensional wave equation: 2ut2=2ux2+2uy2

    Important:

    Heat equation: ut=C22ux2

    Laplace equation: 2ux2+2uy2+2uz2=0
  • Question 3/10
    1 / -0

    Find the values of y(1) by solving the differential equation ydydx=6x2+5,y(0)=2
    Solutions

    ydydx=6x2+5

    y dy = (6x2 + 5) dx

    By integrating both the sides, we get

    y22=2x3+5x+C 

    y2 = 4x3 + 10x + C

    y(0) = 2

    C = 4

    Now, y2 = 4x3 + 10x + 4

    At x = 1, y2 = 4 + 10 + 4 = 18

    y(1)=18=±32

  • Question 4/10
    1 / -0

    The solution of the partial differential equation 2zy2+z=0 is when y=0,z=exandzy=ex

    Solutions

    Explanation:

    2y2+z=0

    If z were function of y alone, the solution would have been z = A sin y + B cos y, where A and B are constants.

    Since z is a function of x and y, A and B can be arbitrary functions of x.

    Hence the solution of the given equations is,

    z = f(x) sin y + ϕ(x) cos y

    zy=f(x)cosyϕ(x)siny

    At, y = 0, z = ex

    ⇒ ex = ϕ(x)

    At, y=0,zy=ex

    ⇒ e-x = f(x)

    The solution is,

    z = e-x sin y + ex cos y
  • Question 5/10
    1 / -0

    A third order ordinary differential equation with x, x ln x and x ln2x as linearly independent solutions is given by

    Solutions

    Linear differential equations with variable coefficients can be reduced to linear differential equations with constant coefficients by suitable substitutions.

    Euler Cauchy Homogeneous linear equation:

    xndnydxn+c1xn1dn1ydxn1+...+cn1xdydx+cny=f(x)

    Take x = e⇒ t = log x

    dydx=dydt.dtdx=dydt.1xxdydx=dydt=Dyx2d2ydx2=D(D1)y;x3d3ydx3=D(D1)(D2)y

    Given that, x, x ln x. and ln2x as linearly independent solutions.

    y = C1x + C2x ln x + C3x ln2 x

    put, t = ln x

    ⇒ x = et

    ⇒ y = C1 et + C2 t et + C3 t2 et

    ⇒ y = (C1 + C2t + C3t2) et

    From the above equation, roots of auxiliary equation are, D = 1, 1, 1

    Now, the auxiliary equation is,

    (D - 1) (D - 1) (D - 1) = 0

    ⇒ (D2 + 1 - 2D) (D - 1) = 0

    ⇒ D3 - 3D2 + 3D - 1 = 0      ----(1)

    The standard Cauchy’s differential equation is in the form of

    K1 D(D - 1) (D - 2) + K2 D(D - 1) + K3 D + K4 = 0

    ⇒ K1 [D3 - 3D2 + 2D] + K2 [D2 - D] + K3D + K4 = 0      ----(2)

    By comparing the above two equations,

    K1 = 1, K4 = -1

    -2K1 + K2 = -3 ⇒ K2 = 0

    ⇒ K3 = 1

    Now the equation (2) becomes,

    D(D - 1) (D - 2) + D - 1 = 0

    ⇒ D(D - 1) (D - 2) y + Dy - y = 0

    x3d3ydx3+xdydxy=0

    ⇒ x3y''' + xy' - y = 0

  • Question 6/10
    1 / -0

    Consider the equation dydx=y2x with the boundary y(1) = 1. Which one of the following is the correct range of x for which y is real and finite?

    Solutions

    dydx=y2x

    dyy2=dxx

    =dyy2=dxx

    1y=ln(x)+c

    put y(1) = 1

    1(1)=ln(1)+c

    ⇒ c = - 1

    1y=ln(x)1

    y=11ln(x)

    For y to be finite

    1ln(x)0andx>0

    ⇒ ln (x) ≠ 1

    ⇒ x ≠ e1

    ⇒ x ≠ e

    ⇒ x ≠ 2.718

    So the correct range of x is 0 < x < 2.71 and 2.718 < x ≤ ∞

    From the given options, 3 ≤ x ≤ ∞ satisfies the above conditions.

  • Question 7/10
    1 / -0

    Particular integral of (x2D22)y=x2+1x
    Solutions

    Concept:

    Euler Cauchy Homogeneous linear equation:

    xndnydxn+c1xn1dn1ydxn1+...+cn1xdydx+cny=f(x)

    Take x = et ⇒ t = log x

    dydx=dydt.dtdx=dydt.1xxdydx=dydt=Dyx2d2ydx2=D(D1)y;x3d3ydx3=D(D1)(D2)y

    Calculation:

    (x2D22)y=x2+1x

    (D(D1)2)y=e2t+1et

    (D2 – D - 2)y = e2t + e-t

    PI=1(D2D2)(e2t+et) 

    =1(D2D2)e2t+1(D2D2)et 

    =t2D1e2t+t2D1et 

    =t3e2t+t3et  

    =t3(e2tet)=lnx3(x21x) 

  • Question 8/10
    1 / -0

    The complementary solution of the differential equation x2d3ydx34xd2ydx2+6dydx=4 is
    Solutions

    Concept:

    Euler Cauchy Homogeneous linear equation:

    xndnydxn+c1xn1dn1ydxn1+...+cn1xdydx+cny=f(x)

    Take x = et ⇒ t = log x

    dydx=dydt.dtdx=dydt.1xxdydx=dydt=Dyx2d2ydx2=D(D1)y;x3d3ydx3=D(D1)(D2)y

    Calculation:

    x2d3ydx34xd2ydx2+6dydx=4

    By multiplying with ‘x’ on both sides

    x3d3ydx34x2d2ydx2+6xdydx=4x

    The given equations become,

    ⇒ [D (D – 1) (D – 2) – 4 D (D – 1) + 6D] y = 4x

    ⇒ (D3 – 3D2 + 2D – 4D2 + 4D + 6D) y = 4x

    ⇒ (D3 – 7D2 + 12D) y = 4x

    Auxiliary equation: D3 – 7D2 + 12D = 0

    ⇒ D (D2 – 7D + 12) = 0

    ⇒ D = 0, 3, 4

    Complementary solution (CF) = C1 + C2 e3t + C3 e4t

    CF = C1 + C2 x3 + C3x4  

  • Question 9/10
    1 / -0

    General solution of the Cauchy-Euler equation x2d2ydx27xdydx+16y=0 is
    Solutions

    Concept:

    For different roots of the auxiliary equation, the solution (complementary function) of the differential equation is as shown below.

    Roots of Auxiliary Equation

    Complementary Function

    m1, m2, m3, … (real and different roots)

    C1em1x+C2em2x+C3em3x+

    m1, m1, m3, … (two real and equal roots)

    (C1+C2x)em1x+C3em3x+

    m1, m1, m1, m4… (three real and equal roots)

    (C1+C2x+C3x2)em1x+C4em4x+

    α + i β, α – i β, m3, … (a pair of imaginary roots)

    eαx(C1cosβx+C2sinβx)+C3em3x+

    α ± i β, α ± i β, m5, … (two pairs of equal imaginary roots)

    eαx((C1+C2x)cosβx+(C3+C4x)sinβx)+C5em5x+

     

    Calculation:

    x2d2ydx27xdydx+16y=0

    Put x = et

    ⇒ t = ln x

    dydx=dydt.dtdx=dydt.1xxdydx=dydt=Dyx2d2ydx2=D(D1)y;x3d3ydx3=D(D1)(D2)y

    Now, the above differential equation becomes

    D (D – 1) y – 7 D y + 16 y = 0

    ⇒ D2 y – D y – 7 D y + 16 y = 0

    ⇒ (D2 – 8 D + 16) y = 0

    Auxiliary equation:

    (D2 – 8 D + 16) = 0

    ⇒ D = 4

    The solutions for the above roots of auxiliary equations are:

    y(t) = (c1 + c2 t) e4t

    ⇒ y(x) = (c1 + c2 ln x) x4
  • Question 10/10
    1 / -0

    The solution of a partial differential equation is in the form of z = f1 (y - ax) + x f2 (y - bx).

    42zx2+122zxy+92zy2=0 

    Then the values of a and b are
    Solutions

    The given partial differential equation can be written as

    (4D2 + 12DD’ + 9D’2) z = 0

    Its auxiliary equation is,

    4m2 + 12m + 9 = 0

    m=32,32 

    The complete solution is,

    z = f1 (y – 1.5 x) + x f2 (y – 1.5 x)

    Therefore, a=32,b=32
User Profile
-

Correct (-)

Wrong (-)

Skipped (-)


  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Click on Allow to receive notifications
×
Open Now