Please wait...

Engineering Mathematics Test 4
Result
Engineering Mathematics Test 4
  • /

    Score
  • -

    Rank
Time Taken: -
  • Question 1/10
    1 / -0

    What is the value of limθ1cos2θθ ?
    Solutions

    letf(x)=limθ1cos2θθ

    f(x)=limθ2sin2θθ

    Since -1 ≤  sinθ ≤ 1

    Therefore 2sinθ  at max can be 2

    limθ1θ=0

    Therefore f(x)=limθ1cos2θθ=0

  • Question 2/10
    1 / -0

    Compute the value of ​limx3x3125x28x+15

    Solutions

    y=limx3x3125x28x+15

    limx3x3125x28x+15=00

    Applying L Hospital’s rule

    limx33x22x8=272=544

  • Question 3/10
    1 / -0

    The values of x for which the function

    f(x)=x23x4x2+3x4

    is NOT continuous are

    Solutions

    f(x)=x23x4x2+3x4

    This function is not defined for:

    x2 + 3x – 4 = 0

    ⇒ (x + 4)(x - 1) = 0 i.e.

    At x = 1 and x = - 4

    ∴ This function f(x) is not continuous at x = 1, -4
  • Question 4/10
    1 / -0

    If the value of  y=limy(1+14x)x  then find y?
    Solutions

    Concept:

    Putting x = ∞ to the given limiting function, we get:

    (1+1)=1

    1 is one of the indeterminant forms.

    We can modify the given limits as:

    limx(1+14x)x=limxeln(1+14x)x

    Calculation

    y=elimxxln(1+14x)

    The above can be written as:

    ef(x)    --(1)

    where:

    y=limxx×ln(1+14x)       ---(2)

    The above can be written as:

    limxln(1+14x)1/x  

    Putting on the limit of x = ∞, we get:

    limxIn(1+14x)1/x=00

    Applying L-Hospitals rule, we get:

    =limx(11+14x)(14x2)1/x2=14

     

    Putting this in equation (1), we can write:

    elimxxIn(1+1x)=e14

    limx(1+14x)x=e14
  • Question 5/10
    1 / -0

    The value of limh028cosh8h[sin8(π6+h)sin8π6]
    Solutions

    L=limh028cosh8h[sin8(π6+h)sin8π6]

    put h = 0

    L=28cos08×0[sin8(π6+0)sin8π6]

    L=00

    It is of the form

    Apply L Hospital

    L=limh028cosh[8sin7(π6+h)cos(π6)0]+[sin8(π6+h)sin8π6]28cosh(sinh)8×1

    L=28cos0[8sin7(π6)cos(π6)]]+08

    L=28[8×(12)7×(32)]8

    L=3
  • Question 6/10
    1 / -0

    Consider a function g(x) continuous at x = 0 where

    g(x)=(128x4x)ax1forx0

    =5forx=0

    What is the value of a?
    Solutions

    using L Hospital's

    limx0128xlog1284xlog4axloga=5

    1280log12840log4a0loga=5

    log128log4loga=5

    5loga=log(1284)

    5loga=log(25)

    5loga=5log(2)

    ∴ a = 2

  • Question 7/10
    1 / -0

    What is the value of f(x)=limx1x+x2+x3+x4++xnnx1
    Solutions

    f(x)=limx1x+x2+x3+x4++xnnx1

    f(x)=limx1x+x2+x3+x4++xn(1+1+1+1+..n)x1

    f(x)=limx1(x1x1+x21x1+x31x1+x41x1+)

    f(x)=(1+2+3+4+)

    f(x)=n(n+1)2

  • Question 8/10
    1 / -0

    Consider the function f(x) = |x| in the interval -1 ≤ x ≤ 1. At the point x =0, f(x) is
    Solutions

    Concept:

    A function f(x) is continuous at x = a if,

    Left limit = Right limit = Function value = Real and finite

    A function is said to be differentiable at x =a if,

    Left derivative = Right derivative = Well defined

    Calculation:

    Given:

    f(x) = |x|

    |x| = x for x ≥ 0

    |x|= -x for x < 0

    At x = 0

    Left limit = 0, Right limit = 0, F(0) = 0

    As

    Left limit = Right limit = Function value = 0

    |X| is continuous at x = 0.

    Now

    Left derivative (at x = 0) = -1

    Right derivative (at x = 0) = 1

    Left derivative ≠ Right derivative

    ∴ |x| is not differentiable at x = 0

  • Question 9/10
    1 / -0

    If p=limx0(1+tan2x)12x Find ln p
    Solutions

    Concept:

    If limxaf(x)=1&limxag(x)=

    i.e. 1 form

    then, limxa[f(x)]g(x)

    elimxaϕ(x)[f(x)1]a

    limx0f(x)=1+tan2x=1

    limx0g(x)=12x=

    elimx012x[1+tan2x1]

    p=elimx0[tan(x)x]2

    p = e1/2

    lnp=12

  • Question 10/10
    1 / -0

    Find the value of limx0(5x1)4(7x1).sinx.log(1+x).tanx
    Solutions

    lety=limx0(5x1)4(7x1).sinx.log(1+x).tanx

    Since x → 0 ∴ x4 → 0

    Divide number and denominator by x4

    limx0(5x1)4x4(7x1).sinx.log(1+x).tanxx4

    limx0ax1x=logea

    limx0sinxx=1

    limx0tanxx=1

    limx01+logxx=1

    y=(log5)4log7

User Profile
-

Correct (-)

Wrong (-)

Skipped (-)


  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Click on Allow to receive notifications
×
Open Now